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Abstract: We calculate corrections to the fermion propagator and to the Green’s func-

tions of all fermion bilinear operators of the form Ψ̄ΓΨ, to one-loop in perturbation theory.

We employ the Wilson/clover action for fermions and the Symanzik improved action

for gluons.

The novel aspect of our calculations is that they are carried out to second order in

the lattice spacing, O
(

a2
)

. Consequently, they have addressed a number of new issues,

most notably the appearance of loop integrands with strong IR divergences (convergent only

beyond 6 dimensions). Such integrands are not present in O
(

a1
)

improvement calculations;

there, IR divergent terms are seen to have the same structure as in the O
(

a0
)

case, by

virtue of parity under integration, and they can thus be handled by well-known techniques.

We explain how to correctly extract the full O
(

a2
)

dependence; in fact, our method is

generalizable to any order in a.

The O
(

a2
)

corrections to the quark propagator and Green’s functions computed in this

paper are useful to improve the nonperturbative RI-MOM determination of renormalization

constants for quark bilinear operators.

Our results depend on a large number of parameters: coupling constant, number of

colors, lattice spacing, external momentum, clover parameter, Symanzik coefficients, gauge

parameter. To make these results most easily accessible to the reader, we have included

them in the distribution package of this paper, as an ASCII file named: Oa2results.m; the

file is best perused as Mathematica input.
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1 Introduction

A major issue facing Lattice Gauge Theory, since its early days, has been the reduction of

effects which are due to the finite lattice spacing a, in order to better approach the elusive

continuum limit. A systematic framework to address this issue is Symanzik’s program [1],

in which the regularized action is improved through a judicious inclusion of irrelevant

operators with increasing dimensionality. Thus far, most efforts have been directed towards

O
(

a1
)

improvement; this is automatic in some cases (i.e. requires no tuning of parameters),

by symmetry considerations alone. Such is the case, for example, of the twisted mass

formulation of QCD [2, 3] at maximal twist, where certain observables are O(a1) improved,

as a consequence of symmetries of the fermion action: Setting the maximal twist requires

the tuning of only a single parameter in the action, i.e. the critical quark mass, and no

further improvement of the operators is required.

In other cases, such as with the clover fermion action, O(a) corrections must be

also implemented on individual operators; such corrections take the form of an addi-

tional, finite (non UV-divergent) renormalization or an admixture of appropriate higher

dimensional operators. Determining the values of the renormalization functions or mix-

ing coefficients requires an evaluation of appropriate Green’s functions, as dictated by the

choice of renormalization scheme; these Green’s functions can be evaluated perturbatively

or nonperturbatively.

As regards the perturbative evaluation of Green’s functions for the “ultralocal” fermion

bilinear operators OΓ
a = Ψ̄λaΓΨ (Γ denotes all possible distinct products of Dirac ma-

trices, and λa is a flavor symmetry generator) and the related fermion propagator, the

following types of calculations have appeared thus far in the literature: (i) One-loop cal-

culations to O(a0, ln a) have been performed in the past several years for a wide variety

– 1 –
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of actions, ranging from Wilson fermions/gluons to overlap fermions and Symanzik glu-

ons [4–10]. (ii) There exist one-loop computations of O(a1) corrections, with an arbitrary

fermion mass [6, 11]. (iii) The first two-loop calculations of Green’s functions for OΓ
a

were completed recently, to O(a0), for Wilson/clover/twisted-mass fermions and Wilson

gluons [12, 13]. (iv) A number of O(a0) results have also been obtained by means of

stochastic perturbation theory [14–16].

One-loop computations of O(a2) corrections did not exist to date; indeed they present

some novel difficulties, as compared to O(a1). Extending O(a0) calculations up to O(a1)

does not bring in any novel types of singularities: For instance, terms which were convergent

to O(a0) may now develop at worst an infrared (IR) logarithmic singularity in 4 dimensions

and the way to treat such singularities is well known; also, in most of the cases, e.g. for

m = 0, terms which were already IR divergent to O(a0) will not contribute to O(a1), by

parity of loop integration. On the contrary, many IR singularities encountered at O(a2)

would persist even up to 6 dimensions, making their extraction more delicate. In addition

to that, there appear Lorentz non-invariant contributions in O(a2) terms, such as
∑

µ p
4
µ/p

2

(p: external momentum).

In this paper we present a one-loop perturbative calculation, to O(a2), of the quantum

corrections to the fermion propagator and to the complete basis of local fermion bilinear

currents Ψ̄ΓΨ, using massless fermions described by the Wilson/clover action. We use a

3-parameter family of Symanzik improved gluon actions, comprising all cases which are

in common use (Wilson, tree-level Symanzik, Iwasaki [17], DBW2 [18], Lüscher-Weisz [19,

20]). All calculations have been performed for generic values of the gauge parameter. Also,

by virtue of working in a massless scheme, all of our results are applicable to other ultralocal

fermion actions as well, such as the twisted mass or Osterwalder-Seiler action [21]. Our

results can be used to construct O(a2) improved definitions of the fermion bilinears. In

particular, they will be used in ref. [22] to improve the nonperturbative determinations,

with the RI-MOM method [23], of renormalization constants of bilinear quark operators.

This paper is organized as follows: section 2 is an outline of our calculational procedure;

section 3 describes in detail the evaluation of a prototype IR divergent integral; sections

4 and 5 present the corrections to the propagator and to fermion bilinears, respectively;

section 6 contains a discussion and concluding remarks. Appendix A contains a basis of

the divergent integrals which appear in the calculation, evaluated to the required order in

a.

2 Description of the calculation

Our calculation makes use of the clover (SW) action for fermions; for Nf flavor species this

action reads, in standard notation,

SF =
∑

f

∑

x

(4r +mf )ψ̄f (x)ψf (x)

−
1

2

∑

f

∑

x, µ

[

ψ̄f (x) (r − γµ)Ux, x+µψf (x+ µ) + ψ̄f (x+ µ) (r + γµ)Ux+µ, xψf (x)

]

−
1

4
cSW

∑

f

∑

x, µ, ν

ψ̄f (x)σµν F̂µν(x)ψf (x) (2.1)

– 2 –
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The Wilson parameter r is set to r = 1; f is a flavor index; σµν = [γµ, γν ]/2 ; the clover

coefficient cSW is kept as a free parameter throughout. Powers of the lattice spacing a have

been omitted and may be directly reinserted by dimensional counting. The tensor F̂µν is

a lattice representation of the gluon field tensor, defined through

F̂µν ≡
1

8
(Qµν −Qνµ) (2.2)

where Qµν is the sum of the plaquette loops

Qµν=Ux, x+µUx+µ, x+µ+νUx+µ+ν, x+νUx+ν, x+Ux, x+νUx+ν, x+ν−µUx+ν−µ, x−µUx−µ, x

+Ux, x−µUx−µ, x−µ−νUx−µ−ν, x−νUx−ν, x+Ux, x−νUx−ν, x−ν+µUx−ν+µ, x+µUx+µ, x (2.3)

We perform our calculation for mass independent renormalization schemes, so that

mf = 0; this simplifies the algebraic expressions, but at the same time requires special

treatment when it comes to IR singularities. By taking mf = 0, our calculation and results

are identical also for the twisted mass action and the Osterwalder-Seiler action in the chiral

limit (in the so called twisted mass basis).

For gluons we employ the Symanzik improved action, involving Wilson loops with 4

and 6 links,1 which is given by the relation

SG =
2

g2
0



c0
∑

plaquette

ReTr {1 − Uplaquette} + c1
∑

rectangle

ReTr {1 − Urectangle}

+ c2
∑

chair

ReTr {1 − Uchair} + c3
∑

parallelogram

ReTr {1 − Uparallelogram}



 (2.4)

The coefficients ci can in principle be chosen arbitrarily, subject to the following normal-

ization condition, which ensures the correct classical continuum limit of the action

c0 + 8c1 + 16c2 + 8c3 = 1 (2.5)

Some popular choices of values for ci used in numerical simulations will be considered in

this work, and are itemized in table 1; they are normally tuned in a way as to ensure O(a2)

improvement in the pure gluon sector. Our one-loop Feynman diagrams do not involve

pure gluon vertices, and the gluon propagator depends only on three combinations of the

Symanzik parameters: C0 ≡ c0 + 8c1 + 16c2 + 8c3 (= 1), C1 ≡ c2 + c3, C2 ≡ c1 − c2 − c3 ;

therefore, with no loss of generality all these sets of values have c2 = 0.

For the algebraic operations involved in evaluating the Feynman diagrams relevant to

this calculation, we make use of our symbolic package in Mathematica. Next, we briefly

describe the required steps:

11×1 plaquette, 1×2 rectangle, 1×2 chair (bent rectangle), and 1×1×1 parallelogram wrapped around

an elementary 3-d cube.

– 3 –
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• Algebraic manipulations: The first step in evaluating each diagram is the contrac-

tion among vertices, which is performed automatically once the algebraic expression

of the vertices and the topology (“incidence matrix”) of the diagram are specified.

The outcome of the contraction is a preliminary expression for the diagram; there

follow simplifications of the color dependence, Dirac matrices and tensor structures.

We also fully exploit symmetries of the theory (periodicity, reflection, conjugation,

hypercubic, etc.) to limit the proliferation of the algebraic expressions.

• Dependence on external momentum: Even though one-loop computations are nor-

mally a straighforward procedure, extending to O(a2) introduces several complica-

tions, especially when isolating logarithms and Lorentz non-invariant terms. As a

first task we want to reduce the number of infrared divergent integrals to a minimal

set. To do this, we use two kinds of subtractions among the propagators, using the

simple equalities

1

q̃2
=

1

q̂2
+











4
∑

µ sin4(qµ/2) − 4
(

∑

µ sin2(qµ/2)
)2

q̃2 q̂2











(2.6)

D(q) = Dplaq(q) +
{

D(q) −Dplaq(q)
}

= Dplaq(q) +Dplaq(q)
{

D−1
plaq(q) −D−1(q)

}

D(q) (2.7)

where q stands for k or k + a p, and k (p) is the loop (external) momentum. The

denominator of the fermion propagator, q̃2, is defined as

q̃2 =
∑

µ

sin2(qµ) +
(

mf +
r

2
q̂2
)2
, q̂2 = 4

∑

µ

sin2
(qµ

2

)

(2.8)

For the present work, one sets mf = 0 and r = 1, as used in eq. (2.6); D is the

4×4 Symanzik gluon propagator; the expression for the matrix
(

D−1
plaq(q) −D−1(q)

)

,

which is O(q4), is independent of the gauge parameter, λ, and it can be easily obtained

in closed form. Moreover, we have

(

Dplaq(q)
)

µν
=
δµν

q̂2
− (1 − λ)

q̂µ q̂ν
(q̂2)2

(2.9)

Terms in curly brackets of eqs. (2.6) and (2.7) are less IR divergent than their un-

subtracted counterparts, by two powers in the momentum. These subtractions are

performed iteratively until all primitively divergent integrals (initially depending on

the fermion and the Symanzik propagator) are expressed in terms of the Wilson

gluon propagator.

Having reduced the number of distinct divergent integrals down to a minimum, the

most laborious task is the computation of these integrals, which is performed in a

– 4 –



J
H
E
P
1
0
(
2
0
0
9
)
0
6
4

noninteger number of dimensions D > 4. Ultraviolet divergences are explicitly iso-

lated à la Zimmermann and evaluated as in the continuum. The remainders are

D-dimensional, parameter-free, zero external momentum lattice integrals which can

be recast in terms of Bessel functions, and finally expressed as sums of a pole part

plus numerical constants. We analytically evaluate an extensive basis of superficially

divergent loop integrals, listed in eqs. (A.1)–(A.10) of appendix A; a few of these were

calculated in ref. [24]. The integrals of eqs. (A.1), (A.2), (A.3), are the most demand-

ing ones in the list; they must be evaluated to two further orders in a, beyond the

order at which an IR divergence initially sets in. As a consequence, their evaluation

requires going to D > 6 dimensions. Fortunately, they are a sufficient basis for all

massless integrals which can appear in any O(a2) one-loop calculation; that is, any

such computation can be recast in terms of (A.1), (A.2), (A.3), plus other integrals

which are more readily handled. A correct way to evaluate (A.1), (A.2), (A.3) has

not been presented previously in the literature, despite their central role in O(a2)

calculations, and this has prevented one-loop computations to O(a2) thus far. The

calculation of such an integral is given in detail in the next section.

Terms which are IR convergent can be treated by Taylor expansion in ap to the

desired order. Alternatively, the extraction of the ap dependence may be performed

using iteratively subtractions of the form

f(k + a p) = f(k) +
[

f(k + a p) − f(k)
]

(2.10)

This leads to exact relations such as the following ones

1

k̃ + a p
2 =

1

k̃2
−

∑

µ sin (2kµ + a pµ) sin (a pµ)

k̃ + a p
2
k̃2

−

∑

µ sin
(

kµ +
a pµ

2

)

sin
(a pµ

2

)

(

k̂2 + k̂ + a p
2)

k̃+a p
2
k̃2

(2.11)

1

k̂ + a p
2 =

1

k̂2
−

4
∑

µ sin
(

kµ +
a pµ

2

)

sin
(a pµ

2

)

k̂ + a p
2
k̂2

(2.12)

In these relations the exact ap dependence of the remainders is under full control; this

type of subtraction is especially useful when applied to the Symanzik propagator.

• Numerical integration: The required numerical integrations of the algebraic expres-

sions for the loop integrands (a total of ∼ 40,000 terms) are performed by highly

optimized Fortran programs; these are generated by our Mathematica ‘integrator’

routine. Each integral is expressed as a sum over the discrete Brillouin zone of finite

lattices, with varying size L (44 ≤ L4 ≤ 1284), and evaluated for all values of the

Symanzik coefficients listed in table 1 (corresponding to the Plaquette, Symanzik,

Iwasaki, TILW and DBW2 action).

– 5 –
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• Extrapolation: The last part of the evaluation is the extrapolation of the numerical

results to infinite lattice size. This procedure entails a systematic error, which is

reliably estimated, using a sophisticated inference technique; for one-loop quantities

we expect a fractional error smaller than 10−7.

3 Evaluation of a primitively divergent integral

Divergent integrals which appear in calculations up to O(a1) may be evaluated using the

standard procedure of Kawai et al. [25], in which one subtracts and adds to the original

integrand its naive Taylor expansion, to the appropriate order with respect to a, in D → 4+

dimensions: The subtracted integrand, being UV convergent, is calculated in the continuum

limit a→ 0, using the methods of ref. [26], while the Taylor expansion terms are recast in

terms of Bessel functions and are evaluated in the limit ǫ→ 0 (ǫ ≡ (4 −D)/2).

In contrast to the above, some of the integrals in the present work, given that they

must be evaluated to O(a2), have Taylor expansions which remain IR divergent all the

way up to D ≤ 6 dimensions. A related difficulty regards Kawai’s procedure: Subtracting

from the original integral its Taylor expansion in D-dimensions to the appropriate order,

the UV-convergent subtracted expression at which one arrives can no longer be evaluated

in the continuum limit by naively setting a → 0, because there will be O(a2) corrections

which must not be neglected. These novel difficulties plague integrals (A.1), (A.2), (A.3),

of appendix A. Using a combination of momentum shifts, integration by parts and trigono-

metric identities, one may express (A.2) and (A.3) in terms of (A.1) and other less divergent

integrals. Thus, it suffices to address the evaluation of (A.1)

A1(p) =

∫ π

−π

d4k

(2π)4
1

k̂2 k̂ + a p
2 (3.1)

This is a prototype case of an integral which is IR divergent in D ≤ 6 dimensions; in fact,

all other integrals encountered in the present calculation may be expressed in terms of

A1(p) plus other integrals which are IR convergent at D > 4 (and are thus amenable to a

more standard treatment).

First we split the original integrand I into two parts

I ≡
1

k̂2 k̂ + a p
2 = I1 + I2 (3.2)

where I2 is obtained from I by a series expansion, with respect to the arguments of all

trigonometric functions, to subleading order; I1 is simply the remainder I − I2

I1 =
k2 − k4

12 − k̂2

k2 k̂2 k̂ + a p
2 +

k4
(

k2 − k̂2
)

12 (k2)2 k̂2 k̂ + a p
2 +

k4
(

(k + a p)2 − k̂ + a p
2)

12 (k2)2 (k + a p)2 k̂ + a p
2

+
(k + a p)2 − (k+a p)4

12 − k̂ + a p
2

k2 (k + a p)2 k̂ + a p
2 +

(k + a p)4
(

(k + a p)2 − k̂ + a p
2)

12 k2 ((k + a p)2)2 k̂ + a p
2 (3.3)

I2 =
1

k2 (k + a p)2
+

[

(k + a p)4

12 k2 ((k + a p)2)2
+

k4

12 (k2)2 (k + a p)2

]

(3.4)

– 6 –
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(q4 ≡
∑

µ q
4
µ). I2 is free of trigonometric functions, while I1 is naively Taylor expandable

to O(a2); its integral equals
∫ π

−π

d4k

(2π)4
I1 = 0.004210419649(1) + a2 p2 0.0002770631001(3) + O

(

a4, a4 ln a
)

(3.5)

The errors appearing in the above equation come from extrapolations to infinite lattice size.

To evaluate the integral of I2 we split the hypercubic integration region into a sphere

of arbitrary radius µ about the origin (µ ≤ π) plus the rest

∫ π

−π

=

∫

|k|≤µ

+

(

∫ π

−π

−

∫

|k|≤µ

)

(3.6)

The integral outside the sphere is free of IR divergences and is thus Taylor expandable to

any order, giving2 (for µ = 3.14155)
(

∫ π

−π

−

∫

|k|≤µ

)

d4k

(2π)4
I2 = 6.42919(3) 10−3 + a2 p2 6.2034(1) 10−5 + O

(

a4
)

(3.7)

We are now left with the integral of I2 over a sphere. The most infrared divergent part of

I2 is 1/(k2 (k+a p)2), with IR degree of divergence -4, and can be integrated exactly, giving
∫

|k|≤µ

d4k

(2π)4
1

k2 (k + a p)2
=

1

16π2

(

1 − ln

(

a2 p2

µ2

))

(3.8)

The remaining two terms comprising I2 have IR degree of divergence -2, thus their cal-

culation to O(a2) can be performed in D-dimensions, with D slightly greater that 4. Let

us illustrate the procedure with one of these terms: k4/(
(

k2
)2

(k + a p)4). By appropriate

substitutions of
1

(k + p̄)2
=

1

k2
+

−2(k · p̄) − p̄2

k2 (k + p̄)2
(p̄ ≡ a p) (3.9)

we split this term as follows

k4

(k2)2 (k + p̄)2
=

[

k4

(k2)3
+
k4 (−2(k · p̄) − p̄2)

(k2)4
+

4 k4(k · p̄)2

(k2)5

]

+

(

k4
(

4(k · p̄)p̄2 + (p̄2)2
)

(k2)4 (k + p̄)2
+

4 k4(k · p̄)2
(

−2(k · p̄) − p̄2
)

(k2)5 (k + p̄)2

)

(3.10)

The part in square brackets is polynomial in a and can be integrated easily, using D-

dimensional spherical coordinates. The remaining part is UV-convergent; thus the integra-

tion domain can now be recast in the form
∫

|k|≤µ

=

∫

|k|<∞
−

∫

µ≤|k|<∞
(3.11)

The integral over the whole space can be performed using the methods of ref. [26], whereas

the integral outside the sphere of radius µ is O(a3) and may be safely dropped. The same

procedure is applied to the last term of I2. Adding the contributions from all the steps

described above, we check that the result is independent of µ.

2Due to its peculiar domain, this integral has been evaluated by a Monte Carlo routine, rather than as

a sum over lattice points. The errors in eq. (3.7) are thus Monte Carlo errors.

– 7 –
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1 2

Figure 1. One-loop diagrams contributing to the fermion propagator. Wavy (solid) lines represent

gluons (fermions).

4 Correction to the fermion propagator

The fermion propagator is the most common example of an off-shell quantity suffering from

O(a) effects. Capitani et al. [6] have calculated the first order terms in the lattice spacing for

massive fermions. We carried out this calculation beyond the first order correction, taking

into account all terms up to O
(

a2
)

. Our results, to O
(

a1
)

, are in perfect agreement with

those of ref. [6]. The clover coefficient cSW has been considered to be a free parameter and

our results are given as a polynomial of cSW. Moreover, the dependence on the number of

colors N , the coupling constant g and the gauge fixing parameter λ, is shown explicitly.

The Symanzik coefficients, ci, appear in a nontrivial way in the propagator and, thus, we

tabulate these results for different choices of ci.

The one-loop Feynman diagrams that enter our 2-point Green’s function calculation,

are illustrated in figure 1.

Next, we provide the total expression for the inverse fermion propagator S−1 as a

function of g, N, cSW, λ. Here we should point out that for dimensional reasons, there is a

global prefactor 1/a multiplying our expressions for the inverse propagator, and thus, the

O
(

a2
)

correction is achieved by considering all terms up to O
(

a3p3
)

.

S−1
(p) = i 6p +

a

2
p2 − i

a2

6
6p3

−i 6p g̃2
[

ε(0,1) − 4.79200956(5)λ + ε(0,2) cSW + ε(0,3) c2SW + λ ln
(

a2p2
)

]

−a p2 g̃2
[

ε(1,1) − 3.86388443(2)λ + ε(1,2) cSW + ε(1,3) c2SW

−
1

2
(3 − 2λ− 3 cSW) ln

(

a2p2
)

]

−i a2 6p3 g̃2

[

ε(2,1) + 0.507001567(9)λ + ε(2,2) cSW + ε(2,3) c2SW

+

(

101

120
−

11

30
C2 −

λ

6

)

ln
(

a2p2
)

]

−i a2 p2 6p g̃2

[

ε(2,4) + 1.51604667(9)λ + ε(2,5) cSW + ε(2,6) c2SW

+

(

59

240
+
c1
2

+
C2

60
−

1

4

(

3

2
λ+ cSW + c2SW

))

ln
(

a2p2
)

]

−i a2 6p

∑

µ p
4
µ

p2
g̃2

[

−
3

80
−
C2

10
−

5

48
λ

]

(4.1)
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where g̃2 ≡ g2CF /(16π
2), CF = (N2 − 1)/(2N), C2 = c1 − c2 − c3, 6p

3 =
∑

µ γµp
3
µ, and

the specific values λ = 1 (0) correspond to the Feynman (Landau) gauge. The quantities

ε(i,j) appearing in our results for S−1 are numerical coefficients depending on the Symanzik

parameters, calculated for each action we have considered and tabulated in tables 2–5; the

index i denotes the power of the lattice spacing a that they multiply. In all tables, the

systematic errors in parentheses come from the extrapolation over lattice sizes to L→ ∞.

Terms proportional to 1/a have been left out of eq. (4.1) for conciseness; such terms

represent O(g2) corrections to the critical value of the fermion mass.

We observe that the O(a1) logarithms as well as all terms multiplied by λ, are indepen-

dent of the Symanzik coefficients; on the contrary O(a2) logarithms have a mild dependence

on the Symanzik parameters. A number of Lorentz non-invariant tensors (
∑

µ p
4
µ, 6p

3) ap-

pear in O(a2) correction terms, compatibly with hypercubic invariance. Finally, our O(a1)

results for the Plaquette action, are in agreement with eq. (37) of ref. [6].

To enable cross-checks and comparisons, the per-diagram contributions d1(p), d2(p)

are presented below. The tadpole diagram 1 of figure 1 is free of logarithmic terms and

independent of cSW; its final expression is

d1(p)

g̃2
= i 6p

[

ε̃
(0,1)
1 + 3.050262540200(1)λ

]

+ a p2
[

ε̃
(1,1)
1 + 1.529131270100(1)λ

]

+i a2 6p3
[

ε̃
(2,1)
1 − 0.509710423367(1)λ

]

(4.2)

where the numerical values for the Symanzik dependent coefficients ε̃
(i,1)
1 are listed in

table 6. The main contribution to the propagator correction comes from diagram 2, as can

be seen from the following expression, with ε̃
(i,1)
2 provided in table 7. The remaining terms

with coefficients ε(i,j) are the same as in eq. (4.1).

d2(p)

g̃2
= i 6p

[

ε̃
(0,1)
2 − 7.850272109(6)λ + ε(0,2) cSW + ε(0,3) c2SW + λ ln

(

a2p2
)

]

+a p2

[

ε̃
(1,1)
2 − 5.39301570(2)λ + ε(1,2) cSW + ε(1,3) c2SW

−
1

2
(3 − 2λ− 3 cSW) ln

(

a2p2
)

]

+i a2 6p3

[

ε̃
(2,1)
2 + 1.016711991(9)λ + ε(2,2) cSW + ε(2,3) c2SW

+

(

101

120
−

11

30
C2 −

λ

6

)

ln
(

a2p2
)

]

+i a2 p2 6p

[

ε(2,4) + 1.51604667(9)λ + ε(2,5) cSW + ε(2,6) c2SW

+

(

59

240
+
c1
2

+
C2

60
−

1

4

(

3

2
λ+ cSW + c2SW

))

ln
(

a2p2
)

]

+i a2 6p

∑

µ p
4
µ

p2

[

−
3

80
−
C2

10
−

5

48
λ

]

(4.3)
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Figure 2. One-loop diagram contributing to the bilinear operators. A wavy (solid) line represents

gluons (fermions). A cross denotes the Dirac matrices 11 (scalar), γ5 (pseudoscalar), γµ (vector),

γ5γµ (axial), γ5σµν (tensor T ) and σµν (tensor T ′).

Using our results for the fermion propagator, we can compute the multiplicative renormal-

ization function of the quark field (ZΨ).

5 Fermion bilinear operators

In the context of this work we also study the O
(

a2
)

corrections to Green’s functions of

local fermion operators that have the form Ψ̄ΓΨ. Γ corresponds to the following set of

products of the Dirac matrices

Γ = 11, γ5, γµ, γ
5γµ, γ

5σµν , σµν =
1

2
[γµ, γν ] (5.1)

for the scalar (OS), pseudoscalar (OP ), vector (OV ), axial (OA) and tensor (OT ) operator,

respectively. We restrict ourselves to forward matrix elements (2-point Green’s functions,

zero momentum operator insertions). We also considered the tensor operator OT ′

, corre-

sponding to Γ = σµν and checked that the Green’s function coincides with that of OT ; this

is a nontrivial check for our calculational procedure.

The only one-particle irreducible Feynman diagram that enters the calculation of the

above operators is shown in figure 2.

We show our results for the one-loop corrections to the amputated 2-point Green’s

function of each operator Ψ̄ΓΨ, at momentum p

ΛΓ(p) = 〈Ψ
(

Ψ̄ΓΨ
)

Ψ̄〉amp
(p) (5.2)

Our final results are given as a polynomial of cSW, in a general covariant gauge. Since

their dependence on the Symanzik parameters, ci, cannot be written in a closed form, as

in the case of the quark propagator we will tabulate the numerical coefficients for a variety

of choices for ci, in order to cover a range of values that are used in both perturbative

calculations and numerical simulations.

We begin with the O
(

a2
)

corrected expression for ΛS(p); including the tree-level term,

we obtain

ΛS(p) = 1 + g̃2
[

ε
(0,1)
S + 5.79200956(5)λ + ε

(0,2)
S cSW + ε

(0,3)
S c2SW − ln

(

a2p2
)

(3 + λ)
]

+ a i 6p g̃2

[

ε
(1,1)
S − 3.93575928(1)λ + ε

(1,2)
S cSW + ε

(1,3)
S c2SW

+

(

3

2
+ λ+

3

2
cSW

)

ln
(

a2p2
)

]
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+ a2 p2 g̃2

[

ε
(2,1)
S − 2.27358943(5)λ + ε

(2,2)
S cSW + ε

(2,3)
S c2SW

+

(

−
1

4
+

3

4
λ+

3

2
cSW

)

ln
(

a2p2
)

]

+ a2

∑

µ p
4
µ

p2
g̃2

[

13

24
+
C2

2
−
λ

8

]

(5.3)

The numerical coefficients ε
(0,i)
S , ε

(1,i)
S and ε

(2,i)
S with their systematic errors are presented

in tables 8, 9 and 10, respectively.

One might attempt to use the O(a) corrections computed above in order to devise an

improved operator, with suppressed finite-a artifacts; it should be noted, however, that

improvement by means of local operators, as permitted by Quantum Field Theory, is not

sufficient to warrant a complete cancellation of O
(

a2
)

terms in Green’s functions, since the

latter contain also terms with non-polynomial momentum dependence, such as
∑

µ p
4
µ/p

2.

Thus, at best, one can achieve full O
(

a2
)

improvement only on-shell, or approximate

improvement near a given reference momentum scale. Such non-polynomial terms are not

present at O
(

a1
)

. This comment applies also to the remaining operators we examine below.

Next, we turn to ΛP (p), where Symanzik dependent coefficients, ε
(i,j)
P , are tabulated

in table 11. The pseudoscalar operator is free of O
(

a1
)

terms; moreover, all contributions

linear in cSW vanish

ΛP (p) = γ5 + γ5 g̃2
[

ε
(0,1)
P + 5.79200956(5)λ + ε

(0,2)
P c2SW − ln

(

a2p2
)

(3 + λ)
]

+ a2 p2 γ5 g̃2

[

ε
(2,1)
P − 0.83810121(5)λ + ε

(2,2)
P c2SW +

(

−
1

4
+
λ

4

)

ln
(

a2p2
)

]

+ a2

∑

µ p
4
µ

p2
γ5 g̃2

[

13

24
+
C2

2
−
λ

8

]

(5.4)

The O
(

a2
)

corrected expressions for ΛV (p) and ΛA(p) are more complicated, compared

to the scalar and pseudoscalar amputated Green’s functions, in the sense that momentum

dependence assumes a variety of functional forms; this fact also introduces several coeffi-

cients which depend on the Symanzik parameters

ΛV (p) = γµ +
6p pµ

p2
g̃2
[

− 2λ
]

+γµ g̃
2
[

ε
(0,1)
V + 4.79200956(5)λ + ε

(0,2)
V cSW + ε

(0,3)
V c2SW − λ ln

(

a2p2
)

]

+a i pµ g̃
2
[

ε
(1,1)
V − 0.93575928(1)λ + ε

(1,2)
V cSW + ε

(1,3)
V c2SW

+ (−3 + λ+ 3 cSW) ln
(

a2p2
)

]

+a2 γµ p
2
µ g̃

2

[

ε
(2,1)
V +

λ

8
+ ε

(2,2)
V cSW + ε

(2,3)
V c2SW

+

(

−
53

120
+

11

10
C2

)

ln
(

a2p2
)

]
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+a2 γµ p
2 g̃2

[

ε
(2,4)
V − 0.8110353(1)λ + ε

(2,5)
V cSW + ε

(2,6)
V c2SW

+

(

11

240
−
c1
2

−
C2

60
+
λ

8
−

5

12
cSW +

c2SW

4

)

ln(a2p2)

]

+a2 6p pµ g̃
2

[

ε
(2,7)
V + 0.2436436(1)λ + ε

(2,8)
V cSW + ε

(2,9)
V c2SW

+

(

−
149

120
− c1 −

C2

30
+
λ

4
+
cSW

6
+
c2SW

2

)

ln(a2p2)

]

+a2 γµ

∑

ρ p
4
ρ

p2
g̃2

[

3

80
+
C2

10
+

5

48
λ

]

+a2 6p3 pµ

p2
g̃2

[

−
101

60
+

11

15
C2+

λ

3

]

+a2 6p p3
µ

p2
g̃2

[

−
1

60
+

2

5
C2+

λ

12

]

+a2
6p pµ

∑

ρ p
4
ρ

(p2)2
g̃2

[

−
3

40
−
C2

5
−

5

24
λ

]

(5.5)

The numerical values of ε
(i,j)
V for different Symanzik choices are given in tables 12–16.

ΛA(p) = γ5 γµ +
γ5 6p pµ

p2
g̃2
[

− 2λ
]

+γ5 γµ g̃
2
[

ε
(0,1)
A + 4.79200956(5)λ + ε

(0,2)
A cSW + ε

(0,3)
A c2SW − λ ln

(

a2p2
)

]

+a i γ5 (γµ 6p− pµ) g̃2
[

ε
(1,1)
A − 2.93575928(1)λ

+ ε
(1,2)
A cSW + ε

(1,3)
A c2SW + λ ln

(

a2p2
)

]

+a2 γ5 γµ p
2
µ g̃

2

[

ε
(2,1)
A +

λ

8
+ε

(2,2)
A cSW+ε

(2,3)
A c2SW+

(

−
53

120
+

11

10
C2

)

ln
(

a2p2
)

]

+a2 γ5 γµ p
2 g̃2

[

ε
(2,4)
A −1.7465235(1)λ + ε

(2,5)
A cSW + ε

(2,6)
A c2SW

+

(

−
109

240
−
c1
2

−
C2

60
+

5

8
λ+

7

12
cSW −

c2SW

4

)

ln(a2p2)

]

+a2 γ5 6p pµ g̃
2

[

ε
(2,7)
A + 1.1146200(1)λ + ε

(2,8)
A cSW + ε

(2,9)
A c2SW

+

(

91

120
− c1 −

C2

30
−

3

4
λ−

5

6
cSW −

c2SW

2

)

ln(a2p2)

]

+a2 γ5 γµ

∑

ρ p
4
ρ

p2
g̃2

[

3

80
+
C2

10
+

5

48
λ

]

+a2 γ5 6p
3 pµ

p2
g̃2

[

−
101

60
+

11

15
C2+

λ

3

]

+a2 γ5 6p p
3
µ

p2
g̃2

[

−
1

60
+

2

5
C2+

λ

12

]

+a2 γ5
6p pµ

∑

ρ p
4
ρ

(p2)2
g̃2

[

−
3

40
−
C2

5
−

5

24
λ

]

(5.6)
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Eq. (5.5) and eq. (5.6) have many similar terms, among them the coefficients

ε
(0,2)
A = −ε

(0,2)
V , ε

(0,3)
A = −ε

(0,3)
V (5.7)

The rest of the coefficients ε
(i,j)
A appear in tables 17–20.

The remaining Green’s functions that we computed are those corresponding to the

tensor bilinears (T = γ5σµν , T
′ = σµν), which are the most complicated of all the operators

that we studied. Clearly, the Green’s functions ΛT (p) and ΛT ′

(p), corresponding to T and

T ′, coincide numerically, even though this fact is not immediately apparent from their

algebraic forms. In fact, we computed both ΛT (p) and ΛT ′

(p) in two distinct calculations;

their numerical coincidence constitutes a rather nontrivial check of our results. For the

reader’s convenience, we present below both tensor Green’s functions.

ΛT (p) = γ5 σµν + γ5 σµν g̃
2
[

ε
(0,1)
T + 3.79200956(5)λ + ε

(0,2)
T cSW + ε

(0,3)
T c2SW

+ (1 − λ) ln
(

a2p2
)

]

+a i γ5 (γν pµ − γµ pν)

2
g̃2
[

ε
(1,1)
T + 3.87151852(5)λ + ε

(1,2)
T cSW + ε

(1,3)
T c2SW

+ (3 − 2λ− cSW) ln
(

a2p2
)

]

+a2 γ5

(

γµ γν p
2
µ − γν γµ p

2
ν

)

2
g̃2

[

ε
(2,1)
T +

λ

4
+ ε

(2,2)
T cSW + ε

(2,3)
T c2SW

]

+a2 γ5 (γν 6p pµ − γµ 6p pν)

2
g̃2

[

ε
(2,4)
T + 0.62097643(2)λ + ε

(2,5)
T cSW + ε

(2,6)
T c2SW

+ (2 − λ− cSW) ln
(

a2p2
)

]

+a2 γ5 σµνp
2 g̃2

[

ε
(2,7)
T − 0.7839694(1)λ + ε

(2,8)
T cSW + ε

(2,9)
T c2SW

+

(

1

12
−c1+

C2

3
−
cSW

2

)

ln
(

a2p2
)

]

+a2 γ5

(

γν 6p p
3
µ−γµ 6p p

3
ν

)

2 p2
g̃2

[

−
1

2
+C2+

λ

2

]

+a2 γ5

(

p3
µ pν−p

3
ν pµ

)

2 p2
g̃2

[

17

3
+

2

3
C2

]

+a2 γ5

(

γν 6p
3 pµ−γµ 6p

3 pν

)

2 p2
g̃2

[

17

6
+
C2

3

]

+a2 γ5σµν

∑

ρ p
4
ρ

p2
g̃2

[

−
1

3
+
C2

2
+
λ

3

]

+a2 γ5

(

γµ 6p p
2
µ pν−γν 6p pµ p

2
ν

)

2 p2
g̃2

[

−
7

3
−

4

3
C2−

λ

2

]

(5.8)

The coefficients ε
(i,j)
T are tabulated in tables 21–25.
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ΛT ′

(p) = σµν + σµν g̃
2
[

ε
(0,1)
T ′ + 3.79200956(5)λ + ε

(0,2)
T ′ cSW + ε

(0,3)
T ′ c2SW

+ (1 − λ) ln
(

a2p2
)

]

+a i
(γν pµ−γµ pν)+σµν 6p

2
g̃2
[

ε
(1,1)
T ′ −3.87151852(5)λ+ε

(1,2)
T ′ cSW+ε

(1,3)
T ′ c2SW

+ (−3 + 2λ+ cSW) ln
(

a2p2
)

]

+a2

(

γµ γν p
2
µ − γν γµ p

2
ν

)

2
g̃2

[

ε
(2,1)
T ′ +

λ

4
+ ε

(2,2)
T ′ cSW + ε

(2,3)
T ′ c2SW

]

+a2 (γν 6p pµ − γµ 6p pν)

2
g̃2
[

ε
(2,4)
T ′ − 1.12097643(1)λ + ε

(2,5)
T ′ cSW + ε

(2,6)
T ′ c2SW

+ (−2 + λ+ cSW) ln
(

a2p2
)

]

+a2 σµνp
2 g̃2

[

ε
(2,7)
T ′ − 1.2194576(1)λ + ε

(2,8)
T ′ cSW + ε

(2,9)
T ′ c2SW

+

(

−
11

12
− c1 +

C2

3
+
λ

2

)

ln
(

a2p2
)

]

+a2

(

γν 6p p
3
µ−γµ 6p p

3
ν

)

2 p2
g̃2

[

−
1

2
+C2+

λ

2

]

+a2

(

p3
µ pν−p

3
ν pµ

)

2 p2
g̃2

[

17

3
+

2

3
C2

]

+a2

(

γν 6p
3 pµ − γµ 6p

3 pν

)

2 p2
g̃2

[

17

6
+
C2

3

]

+ a2 σµν

∑

ρ p
4
ρ

p2
g̃2

[

−
1

3
+
C2

2
+
λ

3

]

+a2

(

γµ 6p p
2
µ pν − γν 6p pµ p

2
ν

)

2 p2
g̃2

[

−
7

3
−

4

3
C2 −

λ

2

]

(5.9)

Several coefficients εT ′ can be written in terms of εT (eqs. (5.10)–(5.12)), while the rest are

given in tables 26, 27

ε
(0,1)
T ′ = ε

(0,1)
T , ε

(0,2)
T ′ = ε

(0,2)
T , ε

(0,3)
T ′ = ε

(0,3)
T , (5.10)

ε
(1,1)
T ′ = −ε

(1,1)
T , ε

(1,2)
T ′ = −ε

(1,2)
T , ε

(1,3)
T ′ = −ε

(1,3)
T , (5.11)

ε
(2,2)
T ′ = −ε

(2,2)
T , ε

(2,3)
T ′ = −ε

(2,3)
T , ε

(2,5)
T ′ = −ε

(2,5)
T , ε

(2,6)
T ′ = −ε

(2,6)
T (5.12)

6 Discussion and conclusions

In this paper we have calculated the fermion propagator S(p) and the Green’s functions

ΛΓ(p) for the fermion bilinear operators Ψ̄ΓΨ, where Γ stands for any product of Dirac

gamma matrices. Our calculations were performed to one loop in lattice perturbation the-

ory, using the Wilson/clover fermion action. For gluons we employed a family of Symanzik

improved actions, parameterized by 3 independent “Symanzik” coefficients; explicit results

are presented for some of the most commonly used actions in this family: Wilson, Tree-level

Symanzik, Tadpole improved Lüscher-Weisz, Iwasaki and DBW2.
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Our calculations extend, to a rather large family of fermion/gluon actions, results

which were previously known to O
(

a0
)

and O
(

a1
)

(modulo ln a). However, the truly

novel feature in our calculations is that they were performed to second order in the lattice

spacing a (O(a2, a2 ln a)). This fact introduces a number of complications, which are not

present in lower order results. In a nutshell, the reason for these complications is as follows:

The extraction of a further power of a from a Feynman diagram strengthens, by one unit,

the superficial degree of infrared (IR) divergence of the corresponding integrand over loop

momenta. Thus, a priori, in a O
(

a1
)

calculation, loop integrals would be IR convergent

only in D > 5 dimensions; however, as can be easily deduced by inspection, the most

divergent parts of the integrands are odd functions of the loop momenta, and will thus

vanish upon integration. What is left behind is a less divergent integrand which is IR

convergent in D > 4, just as in the case of O
(

a0
)

calculations, and can thus be treated by

standard methods, such as those of ref. [25]. For O
(

a2
)

calculations, on the other hand,

integrands are IR convergent only at D > 6, and their most divergent parts no longer vanish

upon integration; a naive application of the procedure of ref. [25] will fail to produce all

O
(

a2
)

contributions. The procedure which we propose in this work for handling the above

difficulty is in fact applicable to any order in a. In brief, it recasts the integrands as a sum

of two parts: The first part can be exactly evaluated as a function of a, while the second

part is naively Taylor expandible, as a polynomial to the desired order in a.

Since the propagator and Green’s functions are meant to be used in mass independent

renormalization schemes, our results have been obtained at vanishing fermionic masses;

the case of massive fermions (including non-degenerate flavors and twisted mass terms)

will appear in a forthcoming publication. Nevertheless, even at vanishing masses, our

final expressions are quite lengthy, since they exhibit a rather nontrivial dependence on

the external momentum (p), and they are explicit functions of the number of colors (N),

gauge parameter (λ), lattice spacing (a), clover coefficient ( cSW) and coupling constant

(g); furthermore, most numerical coefficients in these expressions depend on the Symanzik

parameters of the gluon action, and we have tabulated them for the actions we have selected.

For convenience, we accompany this paper with an electronic document, in the form of a

Mathematica input file, allowing the reader to recover immediately numerical values for

any choice of input parameters.

One possible use of our results is in constructing improved versions of the operators

OΓ, with reduced lattice artifacts. In doing so, however, one must bear in mind that, unlike

the O
(

a1
)

case, corrections to O
(

a2
)

include expressions which are non-polynomial in the

external momentum and, therefore, cannot be eliminated by introducing admixtures of local

operators. Full improvement can be achieved at best for on-shell matrix elements only.

Starting from S(p) and ΛΓ(p), it is straightforward to write down the renormalization

functions Zq (for the quark field) and ZΓ (for the operators OΓ) in any renormalization

scheme. Zq and ZΓ, as obtained from S(p) and ΛΓ(p), differ from the corresponding

expressions evaluated at O
(

a0
)

, by lattice artifacts, which are functions of (aµ) (µ: renor-

malization scale), and vanish as a→ 0. At the nonzero values of a employed in numerical

simulations, these factors are quite important. Ideally, one would prefer a nonperturbative

determination of renormalization functions; while this is often possible, several sources of
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Figure 3. Non-perturbative data for Zq(µ0 = 1/a) and ZV , before and after perturbative correc-

tions. Straight lines are extrapolations to small a. (a2p̃2 ≡
∑

µ sin2(apµ))

error must be dealt with. A very effective way to proceed is through a combination of

perturbative and nonperturbative results. This procedure is carried out and explained in

detail in a follow-up work [22]. Briefly stated, nonperturbative data are “corrected” by

the perturbative expressions for Green’s functions, and then extrapolated towards small

a. As a first illustration of this mixed determination, we show in figure 3 nonperturbative

data for Zq and ZV , determined with the RI-MOM method of ref. [23], before and after

the perturbative corrections. The results are obtained by using the Symanzik tree-level

improved gluon action at β = 3.9 and the Nf = 2 twisted mass quark action at maxi-

mal twist, with gauge field configurations and quark propagators generated by the ETM

Collaboration.3 While up to discretization effects ZV is a scale independent quantity, the

(continuum) RG dependence of Zq on the renormalization scale has been removed from the

results shown in figure 3 by evolving the renormalization constant to a fixed reference scale

µ0 = 1/a (∼ 2 GeV), using for the anomalous dimension the 4-loop perturbative expression

computed in ref. [27]. Thus, the residual dependence of both Zq(µ0 = 1/a) and ZV on a2p̃2

observed in figure 3 can be safely interpreted, at large momenta, as a pure discretization

effect. As illustrated in figure 3, the corrected data are virtually flat, allowing for a safer

small-a extrapolation.

3We thank the members of the ETM Collaboration for having provided us with the data of figure 3

before publication.
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The techniques employed in this work are readily applicable to the study of perturba-

tive corrections of other Greens’s functions, to any desired order in a. Examples are matrix

elements of 4-fermion operators appearing in effective weak Hamiltonians, and higher di-

mension twist-2 fermion bilinears involved in generalized parton distributions. We will be

addressing these issues in forthcoming publications.

A A basis of divergent integrals

The most difficult part of this calculation that requires careful attention is the extraction of

the dependence on the external momentum p and the lattice spacing a from the divergent

terms. The singularities are isolated using the procedure explained in section 2, and here we

present the list of primitively divergent integrals that appeared in our algebraic expressions.

In the following integrals we define

k̂µ = 2 sin

(

kµ

2

)

k̂2 = 4
∑

µ

sin2

(

kµ

2

)

◦
kµ = sin (kµ)

In addition, ( )S means sum over inequivalent permutations. No summation over the indices

µ, ν, ρ, σ is implied, unless otherwise stated.

∫ π

−π

d4k

(2π)4
1

k̂2 k̂ + a p
2 = 0.036678329075 −

ln
(

a2p2
)

16π2

+0.0000752406(3) a2 p2 + a2

∑

µ p
4
µ

384π2 p2
+ O

(

a4 p4
)

(A.1)

∫ π

−π

d4k

(2π)4

◦
kµ

k̂2 k̂ + a p
2 = a pµ

[

− 0.008655827648 +
ln
(

a2p2
)

32π2

− 0.0005107825(2) a2 p2 + 0.001171329715 a2 p2
µ

− a2

∑

µ p
4
µ

768π2 p2
+ a2 ln

(

a2p2
)

384π2

(

p2

2
− p2

µ

)

]

+O
(

a5 p5
)

(A.2)

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

(

k̂2
)2

k̂ + a p
2

= δµν

[

0.004327913824 −
ln
(

a2p2
)

64π2

+ 0.00025539124(8) a2 p2 − 0.000135654113 a2 p2
µ
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+ a2

∑

µ p
4
µ

1536π2 p2
+ a2 ln

(

a2p2
)

768π2

(

p2
µ −

p2

2

)

]

+a2 pµ pν

[

1

32π2 a2 p2
− 0.0003788538(2) +

∑

µ p
4
µ

768π2 (p2)2

−

(

p2
µ + p2

ν

)

384π2 p2
+

ln
(

a2p2
)

768π2

]

+ O
(

a4 p4
)

(A.3)

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

k̂2 k̂ + a p
2 = δµν

[

0.014966695116 − 0.001256484446 a2 p2

− 0.001027789631 a2 p2
µ +

a2 p2 ln
(

a2p2
)

192π2

]

+a2 pµ pν

[

0.003970508789−
ln
(

a2p2
)

48π2

]

+O
(

a4 p4
)

(A.4)

∫ π

−π

d4k

(2π)4
(
◦
kµ)3

k̂2 k̂ + a p
2 = a pµ

[

−0.006184131744+0.001102333439 a2 p2

− 0.000174224479 a2 p2
µ+a2 ln

(

a2p2
)

64π2

(

p2
µ−

p2

2

)

]

+O
(

a5p5
)

(A.5)

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

◦
kρ

(

k̂2
)2

k̂ + a p
2

= (δνρ a pµ)S

[

−0.000728769948+
ln
(

a2p2
)

192π2

]

+0.001027789631δµνρ a pµ−a
pµ pν pρ

48π2 p2
+ O

(

a3 p3
)

(A.6)

∫ π

−π

d4k

(2π)4

∑

µ k̂
4
µ

16
(

k̂2
)2

k̂+a p
2

= 0.004050096698−0.000107954163 a2 p2

+a2

∑

µ p
4
µ

1024π2 p2
+ O

(

a4 p4
)

(A.7)

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

◦
kρ

◦
kσ

(

k̂2
)2

k̂ + a p
2

= 0.001589337971 (δµν δρσ)S − 0.001675948042 δµνρσ

−0.000372782983(δµνρ a
2 pµ pσ)S

−0.000062130497(δµν δρσ a
2 p2

µ)S

+δµνρσ

(

0.000186391491 a2 p2 + 0.000410290033 a2 p2
µ

)

+(δµν a
2 pρ pσ)S

(

0.000227848225 −
ln
(

a2p2
)

384π2

)
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+(δµν δρσ)S a
2 p2

(

−0.000245852737 +
ln
(

a2p2
)

768π2

)

+a2 pµ pν pρ pσ

64π2 p2
+ O

(

a4 p4
)

(A.8)

∫ π

−π

d4k

(2π)4

◦
kν

∑

µ k̂
4
µ

16
(

k̂2
)2

k̂ + a p
2

= a pν

[

− 0.000800034900 + 0.000069705553 a2 p2

+ 0.000107082394 a2 p2
ν − a2

∑

ρ p
4
ρ

1280π2 p2

− a2 ln
(

a2p2
)

2560π2

(

p2

2
− p2

ν

)

]

+ O
(

a5 p5
)

(A.9)

∫ π

−π

d4k

(2π)4

◦
kν

◦
kρ

∑

µ
̂kµ+a pµ

4

16
(

k̂2
)2 (

k̂+a p
2)2 = δνρ

[

0.000400017450

−0.000034852777 a2 p2+a2

∑

µ p
4
µ

2560π2 p2

+ 0.000105349447a2p2
ν +a2 ln

(

a2p2
)

5120π2

(

p2

2
−3p2

ν

)

]

+a2 pν pρ

[

0.000006643045−
p2

ν +p2
ρ

2560π2 p2
+

∑

µ p
4
µ

5120π2 (p2)2

+
ln
(

a2p2
)

5120π2

]

+ O
(

a4 p4
)

(A.10)
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Action c0 c1 c3
Plaquette 1.0 0 0

Symanzik 1.6666667 -0.083333 0

TILW, βc0 = 8.60 2.3168064 -0.151791 -0.0128098

TILW, βc0 = 8.45 2.3460240 -0.154846 -0.0134070

TILW, βc0 = 8.30 2.3869776 -0.159128 -0.0142442

TILW, βc0 = 8.20 2.4127840 -0.161827 -0.0147710

TILW, βc0 = 8.10 2.4465400 -0.165353 -0.0154645

TILW, βc0 = 8.00 2.4891712 -0.169805 -0.0163414

Iwasaki 3.648 -0.331 0

DBW2 12.2688 -1.4086 0

Table 1. Input parameters c0, c1, c3.

Action ε
(0,1)

ε(0,2) ε(0,3)

Plaquette 16.6444139(2) -2.24886853(7) -1.39726711(7)

Symanzik 13.02327272(7) -2.01542504(4) -1.24220271(2)

TILW (8.45) 10.82273528(9) -1.84838009(3) -1.13513794(1)

TILW (8.00) 10.45668970(6) -1.81821854(5) -1.11582732(3)

Iwasaki 8.1165665(2) -1.60101088(7) -0.97320689(3)

DBW2 2.9154231(2) -0.96082198(5) -0.56869876(4)

Table 2. The coefficients ε(0,i) (eq. (4.1)) for different actions.

Action ε
(1,1)

ε(1,2) ε(1,3)

Plaquette 12.8269254(2) -5.20234231(6) -0.08172763(4)

Symanzik 10.69642966(8) -4.7529781(1) -0.075931174(1)

TILW (8.45) 9.2865455(1) -4.4186677(2) -0.07160078(1)

TILW (8.00) 9.0430829(2) -4.35681290(3) -0.070688697(3)

Iwasaki 7.40724287(1) -3.88883584(9) -0.061025650(8)

DBW2 3.0835163(2) -2.2646221(1) -0.03366740(1)

Table 3. The coefficients ε(1,i) (eq. (4.1)) for different actions.
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Action ε
(2,1)

ε(2,2) ε(2,3)

Plaquette -4.74536466(2) 0.02028705(5) 0.10348577(3)

Symanzik -4.2478783(2) 0.05136635(6) 0.07865292(7)

TILW (8.45) -3.8139475(2) 0.05751390(9) 0.06651692(3)

TILW (8.00) -3.7342556(1) 0.05830392(9) 0.06444077(4)

Iwasaki -3.2018047(1) 0.08249970(7) 0.04192446(4)

DBW2 -0.8678072(2) 0.1024452(2) -0.00343999(2)

Table 4. The coefficients ε(2,1) − ε(2,3) (eq. (4.1)) for different actions.

Action ε
(2,4)

ε(2,5) ε(2,6)

Plaquette -1.5048070(1) 0.70358496(5) 0.534320852(7)

Symanzik -1.14716212(5) 0.65343092(3) 0.49783419(2)

TILW (8.45) -0.92583451(6) 0.62061757(5) 0.467966296(9)

TILW (8.00) -0.8875297(1) 0.61441084(7) 0.462237852(9)

Iwasaki -0.6202244(1) 0.55587473(6) 0.41846440(4)

DBW2 -0.3202477(5) 0.34886590(2) 0.23968038(4)

Table 5. The coefficients ε(2,4) − ε(2,6) (eq. (4.1)) for different actions.

Action ε̃
(0,1)
1 ε̃

(1,1)
1 ε̃

(2,1)
1

Plaquette 9.174787621(1) 4.5873938103(5) -1.5291312701(2)

Symanzik 7.071174701(5) 3.535587351(2) -1.1785291169(8)

TILW (8.45) 5.86097856(2) 2.930489282(8) -0.976829761(3)

TILW (8.00) 5.663791993(4) 2.831895997(2) -0.9439653322(7)

Iwasaki 4.423664730(5) 2.211832365(2) -0.7372774550(8)

DBW2 1.86908767(4) 0.93454384(2) -0.311514612(6)

Table 6. The coefficients ε̃
(0,i)
1 (eq. (4.2)) for different actions.

Action ε̃
(0,1)
2 ε̃

(1,1)
2 ε̃

(2,1)
2

Plaquette 7.4696262(2) 8.2395316(2) -3.21623339(2)

Symanzik 5.95209802(7) 7.16084231(8) -3.0693492(2)

TILW (8.45) 4.96175672(9) 6.3560562(1) -2.8371177(2)

TILW (8.00) 4.79289770(6) 6.2111869(2) -2.7902902(1)

Iwasaki 3.6929018(2) 5.19541051(1) -2.4645273(1)

DBW2 1.0463355(2) 2.1489724(2) -0.5562925(2)

Table 7. The coefficients ε̃
(0,i)
2 (eq. (4.3)) for different actions.
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Action ε
(0,1)
S ε

(0,2)
S ε

(0,3)
S

Plaquette 0.30799634(6) 9.9867847(2) 0.01688643(6)

Symanzik 0.58345905(5) 8.8507071(1) -0.12521126(5)

TILW (8.45) 0.7049818(1) 8.0538938(2) -0.20881716(3)

TILW (8.00) 0.7195566(1) 7.9115477(2) -0.22196498(3)

Iwasaki 0.74092360(2) 6.9016820(2) -0.29335071(4)

DBW2 -0.0094234(5) 4.0385802(2) -0.35869680(4)

Table 8. The coefficients ε
(0,i)
S (eq. (5.3)) for different actions.

Action ε
(1,1)
S ε

(1,2)
S ε

(1,3)
S

Plaquette 0.6586287(1) -4.20298580(6) -1.286053869(4)

Symanzik 0.33939970(4) -3.76353718(6) -1.150059945(4)

TILW (8.45) 0.1463203(2) -3.42960982(2) -1.054472092(1)

TILW (8.00) 0.1155729(2) -3.36704753(5) -1.037165442(1)

Iwasaki -0.05097214(7) -2.88571027(1) -0.909503374(3)

DBW2 -0.1248521(3) -1.15247167(2) -0.53943631(1)

Table 9. The coefficients ε
(1,i)
S (eq. (5.3)) for different actions.

Action ε
(2,1)
S ε

(2,2)
S ε

(2,3)
S

Plaquette 2.60041308(7) -4.15080331(7) 0.17641091(2)

Symanzik 2.3547298(2) -3.85277871(9) 0.196461884(5)

TILW (8.45) 2.1881285(8) -3.6249313(5) 0.21113016(1)

TILW (8.00) 2.1605653(8) -3.58171175(4) 0.21385016(2)

Iwasaki 2.02123300(8) -3.23459547(4) 0.234502732(7)

DBW2 2.3731619(3) -1.9332087(1) 0.2953480(3)

Table 10. The coefficients ε
(2,i)
S (eq. (5.3)) for different actions.

Action ε
(0,1)
P ε

(0,2)
P ε

(2,1)
P ε

(2,2)
P

Plaquette 9.95102761(8) 3.43328275(3) 0.84419938(7) -0.25823485(3)

Symanzik 8.7100837(1) 2.98705498(3) 0.70640549(6) -0.27556247(3)

TILW (8.45) 7.84510495(6) 2.67986902(3) 0.65030355(6) -0.28812231(2)

TILW (8.00) 7.6896423(1) 2.62578350(2) 0.64432843(6) -0.29027771(3)

Iwasaki 6.55611308(7) 2.25383382(3) 0.66990790(5) -0.30221183(3)

DBW2 2.9781769(6) 1.24882665(4) 1.5569125(1) -0.3362271(2)

Table 11. The coefficients ε
(0,i)
P and ε

(2,i)
P (eq. (5.4)) for different actions.
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Action ε
(0,1)
V ε

(0,2)
V ε

(0,3)
V

Plaquette 3.97338480(2) -2.49669620(4) 0.85409908(1)

Symanzik 3.57961385(3) -2.21267683(2) 0.77806655(1)

TILW (8.45) 3.32483844(4) -2.01347343(2) 0.72217154(1)

TILW (8.00) 3.28098129(5) -1.97788691(3) 0.71193712(2)

Iwasaki 2.98283189(2) -1.72542048(4) 0.63679613(2)

DBW2 2.25812410(4) -1.00964505(3) 0.40188086(2)

Table 12. The coefficients ε
(0,i)
V (eq. (5.5)) for different actions.

Action ε
(1,1)
V ε

(1,2)
V ε

(1,3)
V

Plaquette 2.7109817(1) -1.84813992(2) -0.39052850(2)

Symanzik 2.09743725(3) -1.51877201(8) -0.385127257(2)

TILW (8.45) 1.64290440(2) -1.2579161(2) -0.37793187(2)

TILW (8.00) 1.55841933(4) -1.20780827(3) -0.3761606511(4)

Iwasaki 0.9074321(1) -0.80352187(4) -0.356005234(3)

DBW2 -1.4498098(4) 0.8826550(3) -0.264655885(7)

Table 13. The coefficients ε
(1,i)
V (eq. (5.5)) for different actions.

Action ε
(2,1)
V ε

(2,2)
V ε

(2,3)
V

Plaquette 1.5541024(2) 0.32907377(4) -0.0060202576(6)

Symanzik 1.6762868(2) 0.22601986(5) 0.02822949(2)

TILW (8.45) 1.63378530(3) 0.16772628(3) 0.04300929(5)

TILW (8.00) 1.6190247(1) 0.15805313(3) 0.04550457(5)

Iwasaki 1.4573118(1) 0.0858961(2) 0.07934994(2)

DBW2 -1.1604825(4) -0.0504803(3) 0.13992474(3)

Table 14. The coefficients ε
(2,1)
V − ε

(2,3)
V (eq. (5.5)) for different actions.

Action ε
(2,4)
V ε

(2,5)
V ε

(2,6)
V

Plaquette 0.2500659(2) 0.8859920(1) -0.300364436(2)

Symanzik 0.0214112(1) 0.8342659(2) -0.28736163(1)

TILW (8.45) -0.1100958(1) 0.791026749(4) -0.27444757(3)

TILW (8.00) -0.1318272(2) 0.78255494(3) -0.27181092(1)

Iwasaki -0.2668492(1) 0.712786719(6) -0.25078366(2)

DBW2 -0.1528741(6) 0.42190739(4) -0.13978037(7)

Table 15. The coefficients ε
(2,4)
V − ε

(2,6)
V (eq. (5.5)) for different actions.
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Action ε
(2,7)
V ε

(2,8)
V ε

(2,9)
V

Plaquette 1.27887765(9) 0.27776135(2) -0.35475044(2)

Symanzik 1.03773908(9) 0.28969451(4) -0.302816648(5)

TILW (8.45) 0.89400856(7) 0.2930984(2) -0.25886703(3)

TILW (8.00) 0.87034685(8) 0.29343883(9) -0.25031691(5)

Iwasaki 0.76263373(2) 0.29755270(5) -0.184270928(8)

DBW2 1.7371355(5) 0.2960594(1) 0.10831780(4)

Table 16. The coefficients ε
(2,7)
V − ε

(2,9)
V (eq. (5.5)) for different actions.

Action ε
(0,1)
A ε

(1,1)
A ε

(1,2)
A ε

(1,3)
A

Plaquette -0.84813073(8) 1.34274645(8) -1.71809242(4) 0.130176166(7)

Symanzik -0.48369852(8) 0.92541220(1) -1.54604828(4) 0.128375752(4)

TILW (8.45) -0.2452231(1) 0.64518173(2) -1.42093097(4) 0.125977289(1)

TILW (8.00) -0.20406156(8) 0.59652190(3) -1.39831769(4) 0.125386884(3)

Iwasaki 0.0752372(1) 0.2684958(1) -1.238019617(7) 0.1186684108(9)

DBW2 0.7643240(1) -0.56650487(5) -0.75581589(7) 0.088218628(3)

Table 17. The coefficients ε
(0,1)
A and ε

(1,i)
A (eq. (5.6)) for different actions.

Action ε
(2,1)
A ε

(2,2)
A ε

(2,3)
A

Plaquette 0.3879068(1) 1.85116980(8) -0.093094486(8)

Symanzik 0.29616583(7) 1.7629637(2) -0.11136345(3)

TILW (8.45) 0.2483248(2) 1.65782471(1) -0.118658311(8)

TILW (8.00) 0.2378781(2) 1.63840648(4) -0.11982438(1)

Iwasaki 0.05917686(4) 1.5707047(2) -0.13932655(1)

DBW2 -2.2341918(4) 1.22932319(6) -0.17119304(8)

Table 18. The coefficients ε
(2,1)
A − ε

(2,3)
A (eq. (5.6)) for different actions.

Action ε
(2,4)
A ε

(2,5)
A ε

(2,6)
A

Plaquette 1.6350438(1) -1.59945524(6) 0.333900263(8)

Symanzik 1.3008790(1) -1.48761993(3) 0.314172576(5)

TILW (8.45) 1.0461303(2) -1.39361896(4) 0.297787700(5)

TILW (8.00) 0.9998744(1) -1.37577372(4) 0.29455820(2)

Iwasaki 0.6845753(1) -1.24800562(3) 0.26827353(2)

DBW2 0.0967251(2) -0.735419342(8) 0.14738921(4)

Table 19. The coefficients ε
(2,4)
A − ε

(2,6)
A (eq. (5.6)) for different actions.

– 26 –



J
H
E
P
1
0
(
2
0
0
9
)
0
6
4

Action ε
(2,7)
A ε

(2,8)
A ε

(2,9)
A

Plaquette 0.41758917(4) 0.395847810(9) 0.31972188(2)

Symanzik 0.596637529(2) 0.33473715(4) 0.27870681(2)

TILW (8.45) 0.73021636(8) 0.29171961(4) 0.24115534(2)

TILW (8.00) 0.75716237(6) 0.28297665(3) 0.233647603(8)

Iwasaki 1.05772129(4) 0.18672220(2) 0.17428813(3)

DBW2 3.4449465(4) -0.22085461(4) -0.10748502(5)

Table 20. The coefficients ε
(2,7)
A − ε

(2,9)
A (eq. (5.6)) for different actions.

Action ε
(0,1)
T ε

(0,2)
T ε

(0,3)
T

Plaquette 0.37366536(7) -1.66446414(3) -0.5750281973(1)

Symanzik 0.51501972(4) -1.47511786(3) -0.4769739579(4)

TILW (8.45) 0.62806240(5) -1.34231565(2) -0.411841977(2)

TILW (8.00) 0.64974666(4) -1.31859128(1) -0.4006364262(1)

Iwasaki 0.82253993(3) -1.15028034(3) -0.3267471901(5)

DBW2 1.5201736(4) -0.67309671(3) -0.1483549734(1)

Table 21. The coefficients ε
(0,i)
T (eq. (5.8)) for different actions.

Action ε
(1,1)
T ε

(1,2)
T ε

(1,3)
T

Plaquette -4.05372833(7) 1.866287582(5) -0.8573692476(6)

Symanzik -3.0228493(1) 1.59558642(1) -0.7667066321(8)

TILW (8.45) -2.28808611(8) 1.39406610(3) -0.7029813946(7)

TILW (8.00) -2.15494125(2) 1.357142525(7) -0.691443627(2)

Iwasaki -1.17592792(3) 1.087913642(4) -0.6063355831(7)

DBW2 2.0163147(3) 0.15488056(9) -0.359624204(3)

Table 22. The coefficients ε
(1,i)
T (eq. (5.8)) for different actions.

Action ε
(2,1)
T ε

(2,2)
T ε

(2,3)
T

Plaquette 2.3328621(2) -1.52209604(8) 0.23683195(1)

Symanzik 2.4912319(2) -1.53694399(3) 0.26295051(2)

TILW (8.45) 2.4578347(1) -1.49009843(6) 0.26767225(1)

TILW (8.00) 2.44550431(4) -1.48035333(8) 0.26834751(3)

Iwasaki 2.3441345(2) -1.4848088(1) 0.30172406(2)

DBW2 1.3013094(2) -1.2798033(3) 0.3475909(1)

Table 23. The coefficients ε
(2,1)
T − ε

(2,3)
T (eq. (5.8)) for different actions.
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Action ε
(2,4)
T ε

(2,5)
T ε

(2,6)
T

Plaquette -2.02795509(9) 0.11808647(1) 0.07250824(3)

Symanzik -1.55221265(9) 0.04504264(4) 0.07020813(1)

TILW (8.45) -1.2361662(1) -0.00137858(3) 0.06309676(1)

TILW (8.00) -1.17754207(2) -0.0104623(1) 0.06169762(2)

Iwasaki -0.6509124(1) -0.11083048(4) 0.06071268(8)

DBW2 1.4802111(2) -0.51691409(6) 0.03446776(7)

Table 24. The coefficients ε
(2,4)
T − ε

(2,6)
T (eq. (5.8)) for different actions.

Action ε
(2,7)
T ε

(2,8)
T ε

(2,9)
T

Plaquette 0.3932905(2) 1.10184617(6) -0.02744360(1)

Symanzik 0.1467998(1) 1.03762644(2) -0.03500219(3)

TILW (8.45) -0.0094312(1) 0.97633518(7) -0.038311849(6)

TILW (8.00) -0.0364177(1) 0.96442476(2) -0.03892456(3)

Iwasaki -0.2049940(1) 0.88259379(5) -0.04896801(2)

DBW2 -0.3118850(6) 0.51292384(2) -0.07146761(1)

Table 25. The coefficients ε
(2,7)
T − ε

(2,9)
T (eq. (5.8)) for different actions.

Action ε
(2,1)
T ′ ε

(2,4)
T ′ ε

(2,7)
T ′

Plaquette 0.00047095(5) -0.30537822(7) 1.4070324(1)

Symanzik -0.26900984(7) -0.67000961(5) 1.0574111(1)

TILW (8.45) -0.31308657(6) -0.90858179(3) 0.7651952(1)

TILW (8.00) -0.31678921(7) -0.95117312(1) 0.7107479(2)

Iwasaki -0.45213470(9) -1.24108756(9) 0.3465297(2)

DBW2 -0.8461093(2) -1.9354110(1) -0.6289363(3)

Table 26. The coefficients ε
(2,1)
T ′ , ε

(2,4)
T ′ , ε

(2,7)
T ′ (eq. (5.9)) for different actions.

Action ε
(2,8)
T ′ ε

(2,9)
T ′

Plaquette 0.28175492(1) 0.054718244(7)

Symanzik 0.24663315(4) 0.06136902(2)

TILW (8.45) 0.2319752(1) 0.06397589(2)

TILW (8.00) 0.22947913(7) 0.064400395(7)

Iwasaki 0.19560470(5) 0.07153771(1)

DBW2 0.13147908(9) 0.08509400(2)

Table 27. The coefficients ε
(2,8)
T ′ , ε

(2,9)
T ′ (eq. (5.9)) for different actions.
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